An introduction to methods for automated learning of relationships on the basis of empirical data. Classification and regression using nearest neighbour methods, decision trees, linear models, and neural networks. Clustering algorithms. Problems of overfitting and of assessing accuracy. Basics of reinforcement learning.
CSC411H1, STA314H1, ECE421H1, CSC311H5, CSC411H5, CSCC11H3. NOTE: Students not enrolled in the Computer Science Major or Specialist program at A&S, UTM, or UTSC, or the Data Science Specialist at A&S, are limited to a maximum of 1.5 credits in 300-/400-level CSC/ECE courses.